8 research outputs found

    Strategies for regional deployment of hydrogen infrastructure

    Get PDF
    In response to the growing urge towards decarbonisation, more and more initiatives have been set to reduce and/or compensate the level of CO2 (carbon dioxide) emitted by human activities, which is one of the main responsible of the incumbent threats of “global warming” and “climate change”. “Climate neutrality by 2050” has become a decisive topic for political agendas worldwide and, against that background, the hydrogen economy can play a significant role. More and more countries have launched roadmaps and strategies for the creation of hydrogen value chains at national and international level. Also on regional scale, local integrated hydrogen ecosystems are growing, the so-called “Hydrogen Valleys”. These include German region North Rhine-Westphalia (NRW), which officially presented a hydrogen roadmap in November 2020, establishing targets for both the short (2025) and medium terms (2030) for the adoption of hydrogen in the sectors of Mobility, Industry, Energy & Infrastructure. The purpose of the present thesis is to investigate techno-economic strategies for the introduction of a hydrogen infrastructure in NRW over the next 15 years (2035), enabling the achievement of the abovementioned targets. Moreover, being buses explicitly mentioned within NRW hydrogen roadmap, the present thesis focuses on strategies to ensure the optimal deployment of hydrogen buses within the region. The work is conducted with support from the research institute of Forschungszentrum JĂŒlich (FZJ), North-Rhine Westphalia, Germany. A simulation model (H2MIND) developed by FZJ is taken as main research tool. The output from two other models by FZJ (FINE-NESTOR and FINE-Infrastructure, respectively), which defined the scenario behind the NRW H2 Roadmap, are reviewed and served as starting point for the adaptation of the H2MIND model. An integrative mapping activity regarding i) existing bus depots for NRW population mobility and ii) existing steel production sites in Germany serves the purpose of increasing the resolution of H2MIND model in the geospatial description of the potential hydrogen refuelling stations for bus companies in NRW. Both the hydrogen demand and production derived from FINE-NESTOR are distributed geospatially over Germany for the years 2025-2030-2035, according to the hydrogen-related technologies modelled within H2MIND. The demand is broken down into Buses, Trains, Cars, Heavy-Duty Vehicles (HDVs) and Light Commercial Vehicles (LCVs), Material Handling Vehicles (MHVs), Industrial uses for Steel, Ammonia, Methanol and other Chemicals. The production is modelled around onshore wind power plants, steam methane reforming industrial locations and import. Four hydrogen supply chain pathways were compared by H2MIND simulations: i) transport and distribution by gaseous hydrogen trailers (‘GH2 trucks’), ii) transport and distribution by liquefied hydrogen trailers (‘LH2 trucks’), iii) transport via newly built hydrogen pipelines plus distribution via gaseous hydrogen trailers (‘new pipelines’), iv) transport via reassigned natural gas pipelines plus distribution via gaseous hydrogen trailers (‘reassigned NG pipelines’). The analysis and assessment of the H2MIND simulation results are conducted mainly on economic merit. The key variable used for the assessment is the weighted average Total Expense (TOTEX) [€/kg H2]. This comparison is carried out from global-cost perspective, then the cost breakdown is considered in order to identify specific features in the cost determination. The weighted average TOTEX is calculated also for the case of onsite renewable energy-based electrolysis at bus hydrogen refuelling stations, in order to understand how such a strategic choice could impact the overall hydrogen supply chain cost – various shares of self-sufficiency at bus depots are considered, ranging from 0% (fully centralized configuration, no self-sufficiency) to 100% (total self-sufficiency, complete independent). An overall three-fold increase in hydrogen demand is expected between the years 2025 and 2035 (from 450.72 kt/yr to 1,862.33 kt/yr in Germany, and from 177.87 kt/yr to 519.16 kt/yr in NRW). Both on national and regional level, the main demand driver is expected to shift from the Industrial sector (in 2025) to Mobility (in 2035). As for the geospatial distribution, NRW concentrates the highest hydrogen demand in the country, covering alone approximatively one third of the total German hydrogen demand. Within NRW, the relevance of a district depends on what hydrogen-consuming sector is considered. For Mobility and public transportation, based on the allocation factors used within H2MIND model, Köln ranks as the district with highest demand in many mobility sectors. For buses, Aachen, Wuppertal, DĂŒsseldorf are the three top cities in the ranking in addition to Köln. Recommendation is that investments focus on high hydrogen-demand districts during the start-up phase of infrastructure development (period 2025-2035), where higher utilization factors of the infrastructural assets are expected and financial risks are therefore minimized. Looking into the weighted average TOTEX for the four analysed pathways, gaseous hydrogen trailers (‘GH2 trucks’) are the most convenient option for connecting production and consumption during the start-up phase of infrastructure development (period 2025-2035). Growing cost competitiveness is expected for ‘reassigned NG pipelines’ after 2035, thanks to the increased hydrogen demand and the higher utilization factor for pipelines. For the period 2025-2035, a fully centralized hydrogen supply pathway is the best option for covering bus-related hydrogen demand in the introductory phase of hydrogen infrastructure creation, with cost parity for onsite electrolysis being expected for the future after 2035Som svar pĂ„ kraven pĂ„ minskade koldioxidutslĂ€pp har fler och fler initiativ tagits för att minska och/eller kompensera nivĂ„n av CO2 (koldioxid) som slĂ€pps ut pĂ„ grund av mĂ€nskliga aktiviteter, vilket Ă€r en av de frĂ€msta orsakerna till de nuvarande hoten om "global uppvĂ€rmning". ” och ”klimatförĂ€ndringar”. "Klimatneutralitet till 2050" har blivit ett avgörande inslag pĂ„ politiska agendor vĂ€rlden över och mot den bakgrunden kan vĂ€tgasekonomin spela en betydande roll. Fler och fler lĂ€nder har lanserat fĂ€rdplaner och strategier för att skapa vĂ€rdekedjor för vĂ€tgas pĂ„ nationell och internationell nivĂ„. Även i regional skala vĂ€xer lokala integrerade vĂ€tgas-ekosystem, de sĂ„ kallade "vĂ€tgasdalarna". Dessa inkluderar den tyska regionen Nordrhein-Westfalen (NRW), som officiellt presenterade en fĂ€rdplan för vĂ€tgas i november 2020, som faststĂ€llde mĂ„l för bĂ„de kort (2025) och medellĂ„ng sikt (2030) för införandet av vĂ€tgas inom sektorerna rörlighet, industri, Energi & Infrastruktur. Syftet med denna avhandling Ă€r att undersöka tekniska och ekonomiska strategier för införandet av en vĂ€tgasinfrastruktur i NRW under de kommande 15 Ă„ren (2035), vilket gör det möjligt att uppnĂ„ ovan nĂ€mnda mĂ„l. Dessutom, eftersom bussar uttryckligen nĂ€mns i NRW:s vĂ€tgasfĂ€rdplan, fokuserar detta examensarbete pĂ„ strategier för att sĂ€kerstĂ€lla en optimal utplacering av vĂ€tgasbussar inom regionen. Arbetet bedrivs med stöd frĂ„n forskningsinstitutet Forschungszentrum JĂŒlich (FZJ), Nordrhein-Westfalen, Tyskland. En simuleringsmodell (H2MIND) utvecklad av FZJ anvĂ€nds som huvudverktyg för forskning. Resultatet frĂ„n tvĂ„ andra modeller av FZJ (FINE-NESTOR respektive FINE-Infrastructure), som definierade scenariot bakom NRW H2 Roadmap, granskas och tjĂ€nade som utgĂ„ngspunkt för anpassningen av H2MIND-modellen. En integrerad kartlĂ€ggning av i) befintliga bussdepĂ„er för NRW- befolkningsrörlighet och ii) befintliga stĂ„lproduktionsanlĂ€ggningar i Tyskland tjĂ€nar syftet att öka upplösningen av H2MIND-modellen i den geospatiala beskrivningen av potentiella vĂ€tgastankstationer för bussföretag i NRW. BĂ„de vĂ€tgasefterfrĂ„gan och produktionen frĂ„n FINE-NESTOR distribueras geospatialt över Tyskland för Ă„ren 2025-2030-2035, enligt de vĂ€tgasrelaterade teknologierna som modelleras inom H2MIND. EfterfrĂ„gan Ă€r uppdelad i bussar, tĂ„g, bilar, tunga fordon (HDV) och lĂ€tta kommersiella fordon (LCV), materialhanteringsfordon (MHV), industriell anvĂ€ndning för stĂ„l, ammoniak, metanol och andra kemikalier. Produktionen Ă€r modellerad kring vindkraftverk pĂ„ land, Ă„ngmetanreformerande industrilokaler och import. Fyra varianter av vĂ€tgasförsörjningskedjan jĂ€mfördes med H2MIND-simuleringar: i) transport och distribution med gasformiga vĂ€tgasslĂ€p ('GH2-lastbilar'), ii) transport och distribution med slĂ€p för flytande vĂ€te ('LH2-lastbilar'), iii) transport via nybyggda vĂ€tgas rörledningar plus distribution via slĂ€p för gasformigt vĂ€tgas (”nya pipelines”), iv) transport via tidigare naturgasledningar plus distribution via slĂ€p för gasformigt vĂ€te (”om-utnyttjade naturgasrörledningar”). Analysen och bedömningen av H2MIND-simuleringsresultaten utförs huvudsakligen pĂ„ ekonomiska meriter. Den nyckelvariabel som anvĂ€nds för bedömningen Ă€r den vĂ€gda genomsnittliga totala kostnaden (TOTEX) [€/kg H2]. Denna jĂ€mförelse görs ur ett globalt kostnadsperspektiv, sedan analyseras kostnadsfördelningen för att identifiera specifika egenskaper i kostnadsbestĂ€mningen. Det viktade genomsnittet av TOTEX berĂ€knas Ă€ven för fallet med elektrolys baserad pĂ„ förnybar energi pĂ„ plats vid vĂ€tgastankstationer för bussar, för att förstĂ„ hur ett sĂ„dant strategiskt val skulle kunna pĂ„verka den totala kostnaden för vĂ€tgasförsörjningskedjan – olika andelar av sjĂ€lvförsörjning vid bussdepĂ„er övervĂ€gs, allt frĂ„n 0 % (helt centraliserad konfiguration, ingen sjĂ€lvförsörjning) till 100 % (total sjĂ€lvförsörjning, fullstĂ€ndigt oberoende). En övergripande trefaldig ökning av efterfrĂ„gan pĂ„ vĂ€tgas förvĂ€ntas mellan Ă„ren 2025 och 2035 (frĂ„n 450,72 kt/Ă„r till 1 862,33 kt/Ă„r i Tyskland och frĂ„n 177,87 kt/Ă„r till 519,16 kt/Ă„r i NRW). BĂ„de pĂ„ nationell och regional nivĂ„ förvĂ€ntas den frĂ€msta efterfrĂ„gedrivkraften flyttas frĂ„n industrisektorn (2025) till mobilitet (2035). NĂ€r det gĂ€ller den geospatiala fördelningen, koncentrerar NRW den högsta efterfrĂ„gan pĂ„ vĂ€tgas i landet, och tĂ€cker ensam ungefĂ€r en tredjedel av det totala tyska vĂ€tgasbehovet. Inom NRW beror ett distrikts relevans pĂ„ vilken vĂ€tgasförbrukande sektor som betraktas. För Mobilitet och kollektivtrafik, baserat pĂ„ allokeringsfaktorer som anvĂ€nds inom H2MIND-modellen, rankas Köln som det distrikt med högst efterfrĂ„gan inom mĂ„nga mobilitetssektorer. För bussar Ă€r Aachen, Wuppertal, DĂŒsseldorf de tre bĂ€sta stĂ€derna i rankingen förutom Köln. Rekommendation Ă€r att investeringar fokuserar pĂ„ distrikt med hög efterfrĂ„gan pĂ„ vĂ€tgas under uppstartsfasen av infrastrukturutveckling (perioden 2025–2035), dĂ€r högre utnyttjandefaktorer av infrastrukturtillgĂ„ngarna förvĂ€ntas och finansiella risker dĂ€rför minimeras. Om man tittar pĂ„ det vĂ€gda genomsnittliga TOTEX för de fyra analyserade varianterna, Ă€r slĂ€p med vĂ€te i gasform (‘GH2-lastbilar’) det lĂ€mpligaste alternativet för att koppla samman produktion och konsumtion under uppstartsfasen av infrastrukturutvecklingen (perioden 2025–2035). Ökande kostnadsfördelar förvĂ€ntas för "om-utnyttjade naturgasrörledningar" efter 2035, tack vare den ökade efterfrĂ„gan pĂ„ vĂ€tgas och den högre utnyttjandefaktorn för rörledningar. För perioden 2025–2035 Ă€r en helt centraliserad vĂ€tgasförsörjningsvĂ€g det bĂ€sta alternativet för att tĂ€cka bussrelaterad efterfrĂ„gan pĂ„ vĂ€tgas i den inledande fasen av etablerandet av en vĂ€tgasinfrastruktur, med kostnadsparitet för elektrolys pĂ„ plats vilket förvĂ€ntas vara lösningen efter 2035Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.2 - Per a 2030, proporcionar accĂ©s a sistemes de transport segurs, assequibles, accessi­bles i sostenibles per a totes les persones, i millorar la seguretat viĂ ria, en particular mitjan­çant l’ampliaciĂł del transport pĂșblic, amb especial atenciĂł a les necessitats de les persones en situaciĂł vulnerable, dones, nenes, nens, persones amb discapacitat i persones gran

    Locally advanced prostate cancer: three-dimensional magnetic resonance spectroscopy to monitor prostate response to therapy.

    Get PDF
    Purpose: To correlate results of three-dimensional magnetic resonance spectroscopic imaging (MRSI) with prostate-specific antigen (PSA) levels and time since external beam irradiation (EBRT) in patients treated with long-term hormone therapy (HT) and EBRT for locally advanced disease to verify successful treatment by documenting the achievement of metabolic atrophy (MA). Methods and Materials: Between 2006 and 2008, 109 patients were consecutively enrolled. MA was assessed by choline and citrate peak area-to-noise-ratio <5:1. Cancerous metabolism (CM) was defined by choline-to-creatine ratio >1.5:1 or choline signal-to-noise-ratio >5:1. To test the strength of association between MRSI results and the time elapsed since EBRT (TEFRT), PSA levels, Gleason score (GS), and stage, logistic regression (LR) was performed. p value <0.05 was statistically significant. The patients’ outcomes were verified in 2011. Results: MRSI documented MA in 84 of 109 and CM in 25 of 109 cases. LR showed that age, GS, stage, and initial and recent PSA had no significant impact on MRSI results which were significantly related to PSA values at the time of MRSI and to TEFRT. Patients were divided into three groups according to TEFRT: 2 years. MA was detected in 54.1% of patients of group 1, 88.9% of group 2, and in 94.5% of group 3 (100% when PSA nadir was reached). CM was detected in 50% of patients with reached PSA nadir in group 1. Local relapse was found in 3 patients previously showing CM at long TEFRT. Conclusion: MA detection, indicative of successful treatment because growth of normal or abnormal cells cannot occur without metabolism, increases with decreasing PSA levels and increasing time on HT after EBRT. This supports long-term HT in advanced prostate cancer. Larger study series are needed to assess whether MRSI could predict local relapse by detecting CM at long TEFRT. 2012 Elsevier In

    Microperimetric evaluation and predictive factors of visual recovery after successful inverted internal limiting membrane-flap technique for macular hole in high myopic eyes

    Get PDF
    IntroductionInverted Internal Limiting Membrane (ILM)-flap technique demonstrated its effectiveness, in terms of anatomical closure rate and visual acuity recovery for high myopic macular holes. We evaluated macular function after a successful inverted ILM-flap for macular holes in high myopic eyes (hMMH) using microperimetry to predict visual prognosis.MethodsA retrospective study on 23 eyes of 23 patients after surgical closure of hMMH, was performed. All patients underwent inverted ILM-flap and gas tamponade. Cataract surgery was performed in phakic eyes. Study outcomes including best-corrected visual acuity (BCVA), retinal sensitivity (RS) at central 12°, central retinal sensitivity (CRS) at central 4° and mean deviation (MD), and fixation behavior as bivariate contour ellipse area (BCEA, degrees2) measured by microperimetry, were evaluated over 6 months. A mixed-effects model was used to evaluate and compare the repeated measurements of outcomes between phakic and pseudophakic eyes. A regression model was performed to assess the relationship between BCVA at 6 months and independent variables.ResultsOverall mean BCVA improved from 0.98 ± 0.21 logMAR at baseline to 0.47 ± 0.31 logMAR at the last follow-up (p &lt; 0.001). Over 6 months, overall sensitivity measurements improved (RS, p = 0.001; CRS, p &lt; 0.0001; MD, p = 0.03), and the BCEA decreased in dimension, although not significantly (p ≄ 0.05). The mixed model revealed a significantly better effect of inverted ILM-flap combined with cataract surgery on BCVA and CRS in phakic eyes than inverted ILM-flap alone in pseudophakic ones. The regression model revealed a relationship of 6-month BCVA with pre-operative BCVA (ÎČ = 0.60, p = 0.02) and RS (ÎČ = −0.03, p = 0.01).ConclusionThe inverted ILM-flap technique significantly improved visual acuity and retinal sensitivity after the hMMH closure, particularly when combined with cataract extraction. Pre-operative visual acuity and retinal sensitivity at central 12° may predict post-surgical visual acuity

    Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study

    Get PDF
    Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age.Methods: From the Italian LIPIGEN cohort, we selected 1188 (&gt;= 18 years) and 708 (&lt;18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation.Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives.Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age

    Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia

    Get PDF
    : Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and Results An lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score ≄1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups &lt;0.0001); however, subjects with FH/M- and lp(a) score ≄1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level ≄190 mg/dL (or from 68% to 50%, considering a more conservative formula). Conclusions Our study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH

    Strategies for regional deployment of hydrogen infrastructure : The case of North Rhine-Westphalia, Germany

    No full text
    In response to the growing urge towards decarbonisation, more and more initiatives have been set to reduce and/or compensate the level of CO2 (carbon dioxide) emitted by human activities, which is one of the main responsible of the incumbent threats of “global warming” and “climate change”. “Climate neutrality by 2050” has become a decisive topic for political agendas worldwide and, against that background, the hydrogen economy can play a significant role. More and more countries have launched roadmaps and strategies for the creation of hydrogen value chains at national and international level. Also on regional scale, local integrated hydrogen ecosystems are growing, the so-called “Hydrogen Valleys”. These include German region North Rhine-Westphalia (NRW), which officially presented a hydrogen roadmap in November 2020, establishing targets for both the short (2025) and medium terms (2030) for the adoption of hydrogen in the sectors of Mobility, Industry, Energy &amp; Infrastructure. The purpose of the present thesis is to investigate techno-economic strategies for the introduction of a hydrogen infrastructure in NRW over the next 15 years (2035), enabling the achievement of the abovementioned targets. Moreover, being buses explicitly mentioned within NRW hydrogen roadmap, the present thesis focuses on strategies to ensure the optimal deployment of hydrogen buses within the region. The work is conducted with support from the research institute of Forschungszentrum JĂŒlich (FZJ), North-Rhine Westphalia, Germany. A simulation model (H2MIND) developed by FZJ is taken as main research tool. The output from two other models by FZJ (FINE-NESTOR and FINE-Infrastructure, respectively), which defined the scenario behind the NRW H2 Roadmap, are reviewed and served as starting point for the adaptation of the H2MIND model. An integrative mapping activity regarding i) existing bus depots for NRW population mobility and ii) existing steel production sites in Germany serves the purpose of increasing the resolution of H2MIND model in the geospatial description of the potential hydrogen refuelling stations for bus companies in NRW. Both the hydrogen demand and production derived from FINE-NESTOR are distributed geospatially over Germany for the years 2025-2030-2035, according to the hydrogen-related technologies modelled within H2MIND. The demand is broken down into Buses, Trains, Cars, Heavy-Duty Vehicles (HDVs) and Light Commercial Vehicles (LCVs), Material Handling Vehicles (MHVs), Industrial uses for Steel, Ammonia, Methanol and other Chemicals. The production is modelled around onshore wind power plants, steam methane reforming industrial locations and import. Four hydrogen supply chain pathways were compared by H2MIND simulations: i) transport and distribution by gaseous hydrogen trailers (‘GH2 trucks’), ii) transport and distribution by liquefied hydrogen trailers (‘LH2 trucks’), iii) transport via newly built hydrogen pipelines plus distribution via gaseous hydrogen trailers (‘new pipelines’), iv) transport via reassigned natural gas pipelines plus distribution via gaseous hydrogen trailers (‘reassigned NG pipelines’). The analysis and assessment of the H2MIND simulation results are conducted mainly on economic merit. The key variable used for the assessment is the weighted average Total Expense (TOTEX) [€/kg H2]. This comparison is carried out from global-cost perspective, then the cost breakdown is considered in order to identify specific features in the cost determination. The weighted average TOTEX is calculated also for the case of onsite renewable energy-based electrolysis at bus hydrogen refuelling stations, in order to understand how such a strategic choice could impact the overall hydrogen supply chain cost – various shares of self-sufficiency at bus depots are considered, ranging from 0% (fully centralized configuration, no self-sufficiency) to 100% (total self-sufficiency, complete independent). An overall three-fold increase in hydrogen demand is expected between the years 2025 and 2035 (from 450.72 kt/yr to 1,862.33 kt/yr in Germany, and from 177.87 kt/yr to 519.16 kt/yr in NRW). Both on national and regional level, the main demand driver is expected to shift from the Industrial sector (in 2025) to Mobility (in 2035). As for the geospatial distribution, NRW concentrates the highest hydrogen demand in the country, covering alone approximatively one third of the total German hydrogen demand. Within NRW, the relevance of a district depends on what hydrogen-consuming sector is considered. For Mobility and public transportation, based on the allocation factors used within H2MIND model, Köln ranks as the8 |district with highest demand in many mobility sectors. For buses, Aachen, Wuppertal, DĂŒsseldorf are the three top cities in the ranking in addition to Köln. Recommendation is that investments focus on high hydrogen-demand districts during the start-up phase of infrastructure development (period 2025-2035), where higher utilization factors of the infrastructural assets are expected and financial risks are therefore minimized. Looking into the weighted average TOTEX for the four analysed pathways, gaseous hydrogen trailers (‘GH2 trucks’) are the most convenient option for connecting production and consumption during the start-up phase of infrastructure development (period 2025-2035). Growing cost competitiveness is expected for ‘reassigned NG pipelines’ after 2035, thanks to the increased hydrogen demand and the higher utilization factor for pipelines. For the period 2025-2035, a fully centralized hydrogen supply pathway is the best option for covering bus-related hydrogen demand in the introductory phase of hydrogen infrastructure creation, with cost parity for onsite electrolysis being expected for the future after 2035.Som svar pĂ„ kraven pĂ„ minskade koldioxidutslĂ€pp har fler och fler initiativ tagits för att minska och/eller kompensera nivĂ„n av CO2 (koldioxid) som slĂ€pps ut pĂ„ grund av mĂ€nskliga aktiviteter, vilket Ă€r en av de frĂ€msta orsakerna till de nuvarande hoten om "global uppvĂ€rmning". ” och ”klimatförĂ€ndringar”. "Klimatneutralitet till 2050" har blivit ett avgörande inslag pĂ„ politiska agendor vĂ€rlden över och mot den bakgrunden kan vĂ€tgasekonomin spela en betydande roll. Fler och fler lĂ€nder har lanserat fĂ€rdplaner och strategier för att skapa vĂ€rdekedjor för vĂ€tgas pĂ„ nationell och internationell nivĂ„. Även i regional skala vĂ€xer lokala integrerade vĂ€tgas-ekosystem, de sĂ„ kallade "vĂ€tgasdalarna". Dessa inkluderar den tyska regionen Nordrhein-Westfalen (NRW), som officiellt presenterade en fĂ€rdplan för vĂ€tgas i november 2020, som faststĂ€llde mĂ„l för bĂ„de kort (2025) och medellĂ„ng sikt (2030) för införandet av vĂ€tgas inom sektorerna rörlighet, industri, Energi &amp; Infrastruktur. Syftet med denna avhandling Ă€r att undersöka tekniska och ekonomiska strategier för införandet av en vĂ€tgasinfrastruktur i NRW under de kommande 15 Ă„ren (2035), vilket gör det möjligt att uppnĂ„ ovan nĂ€mnda mĂ„l. Dessutom, eftersom bussar uttryckligen nĂ€mns i NRW:s vĂ€tgasfĂ€rdplan, fokuserar detta examensarbete pĂ„ strategier för att sĂ€kerstĂ€lla en optimal utplacering av vĂ€tgasbussar inom regionen. Arbetet bedrivs med stöd frĂ„n forskningsinstitutet Forschungszentrum JĂŒlich (FZJ), Nordrhein-Westfalen, Tyskland. En simuleringsmodell (H2MIND) utvecklad av FZJ anvĂ€nds som huvudverktyg för forskning. Resultatet frĂ„n tvĂ„ andra modeller av FZJ (FINE-NESTOR respektive FINE-Infrastructure), som definierade scenariot bakom NRW H2 Roadmap, granskas och tjĂ€nade som utgĂ„ngspunkt för anpassningen av H2MIND-modellen. En integrerad kartlĂ€ggning av i) befintliga bussdepĂ„er för NRW-befolkningsrörlighet och ii) befintliga stĂ„lproduktionsanlĂ€ggningar i Tyskland tjĂ€nar syftet att öka upplösningen av H2MIND-modellen i den geospatiala beskrivningen av potentiella vĂ€tgastankstationer för bussföretag i NRW. BĂ„de vĂ€tgasefterfrĂ„gan och produktionen frĂ„n FINE-NESTOR distribueras geospatialt över Tyskland för Ă„ren 2025-2030-2035, enligt de vĂ€tgasrelaterade teknologierna som modelleras inom H2MIND. EfterfrĂ„gan Ă€r uppdelad i bussar, tĂ„g, bilar, tunga fordon (HDV) och lĂ€tta kommersiella fordon (LCV), materialhanteringsfordon (MHV), industriell anvĂ€ndning för stĂ„l, ammoniak, metanol och andra kemikalier. Produktionen Ă€r modellerad kring vindkraftverk pĂ„ land, Ă„ngmetanreformerande industrilokaler och import. Fyra varianter av vĂ€tgasförsörjningskedjan jĂ€mfördes med H2MIND-simuleringar: i) transport och distribution med gasformiga vĂ€tgasslĂ€p ('GH2-lastbilar'), ii) transport och distribution med slĂ€p för flytande vĂ€te ('LH2-lastbilar'), iii) transport via nybyggda vĂ€tgas rörledningar plus distribution via slĂ€p för gasformigt vĂ€tgas (”nya pipelines”), iv) transport via tidigare naturgasledningar plus distribution via slĂ€p för gasformigt vĂ€te (”om-utnyttjade naturgasrörledningar”). Analysen och bedömningen av H2MIND-simuleringsresultaten utförs huvudsakligen pĂ„ ekonomiska meriter. Den nyckelvariabel som anvĂ€nds för bedömningen Ă€r den vĂ€gda genomsnittliga totala kostnaden (TOTEX) [€/kg H2]. Denna jĂ€mförelse görs ur ett globalt kostnadsperspektiv, sedan analyseras kostnadsfördelningen för att identifiera specifika egenskaper i kostnadsbestĂ€mningen. Det viktade genomsnittet av TOTEX berĂ€knas Ă€ven för fallet med elektrolys baserad pĂ„ förnybar energi pĂ„ plats vid vĂ€tgastankstationer för bussar, för att förstĂ„ hur ett sĂ„dant strategiskt val skulle kunna pĂ„verka den totala kostnaden för vĂ€tgasförsörjningskedjan – olika andelar av sjĂ€lvförsörjning vid bussdepĂ„er övervĂ€gs, allt frĂ„n 0 % (helt centraliserad konfiguration, ingen sjĂ€lvförsörjning) till 100 % (total sjĂ€lvförsörjning, fullstĂ€ndigt oberoende). En övergripande trefaldig ökning av efterfrĂ„gan pĂ„ vĂ€tgas förvĂ€ntas mellan Ă„ren 2025 och 2035 (frĂ„n 450,72 kt/Ă„r till 1 862,33 kt/Ă„r i Tyskland och frĂ„n 177,87 kt/Ă„r till 519,16 kt/Ă„r i NRW). BĂ„de pĂ„ nationell och regional nivĂ„ förvĂ€ntas den frĂ€msta efterfrĂ„gedrivkraften flyttas frĂ„n industrisektorn (2025) till mobilitet (2035). NĂ€r det gĂ€ller den geospatiala fördelningen, koncentrerar NRW den högsta efterfrĂ„gan pĂ„ vĂ€tgas i landet, och tĂ€cker ensam ungefĂ€r en tredjedel av det totala tyska vĂ€tgasbehovet. Inom NRW beror ett10 |distrikts relevans pĂ„ vilken vĂ€tgasförbrukande sektor som betraktas. För Mobilitet och kollektivtrafik, baserat pĂ„ allokeringsfaktorer som anvĂ€nds inom H2MIND-modellen, rankas Köln som det distrikt med högst efterfrĂ„gan inom mĂ„nga mobilitetssektorer. För bussar Ă€r Aachen, Wuppertal, DĂŒsseldorf de tre bĂ€sta stĂ€derna i rankingen förutom Köln. Rekommendation Ă€r att investeringar fokuserar pĂ„ distrikt med hög efterfrĂ„gan pĂ„ vĂ€tgas under uppstartsfasen av infrastrukturutveckling (perioden 2025–2035), dĂ€r högre utnyttjandefaktorer av infrastrukturtillgĂ„ngarna förvĂ€ntas och finansiella risker dĂ€rför minimeras. Om man tittar pĂ„ det vĂ€gda genomsnittliga TOTEX för de fyra analyserade varianterna, Ă€r slĂ€p med vĂ€te i gasform (‘GH2-lastbilar’) det lĂ€mpligaste alternativet för att koppla samman produktion och konsumtion under uppstartsfasen av infrastrukturutvecklingen (perioden 2025–2035). Ökande kostnadsfördelar förvĂ€ntas för "om-utnyttjade naturgasrörledningar" efter 2035, tack vare den ökade efterfrĂ„gan pĂ„ vĂ€tgas och den högre utnyttjandefaktorn för rörledningar. För perioden 2025–2035 Ă€r en helt centraliserad vĂ€tgasförsörjningsvĂ€g det bĂ€sta alternativet för att tĂ€cka bussrelaterad efterfrĂ„gan pĂ„ vĂ€tgas i den inledande fasen av etablerandet av en vĂ€tgasinfrastruktur, med kostnadsparitet för elektrolys pĂ„ plats vilket förvĂ€ntas vara lösningen efter 2035

    Strategies for regional deployment of hydrogen infrastructure : The case of North Rhine-Westphalia, Germany

    No full text
    In response to the growing urge towards decarbonisation, more and more initiatives have been set to reduce and/or compensate the level of CO2 (carbon dioxide) emitted by human activities, which is one of the main responsible of the incumbent threats of “global warming” and “climate change”. “Climate neutrality by 2050” has become a decisive topic for political agendas worldwide and, against that background, the hydrogen economy can play a significant role. More and more countries have launched roadmaps and strategies for the creation of hydrogen value chains at national and international level. Also on regional scale, local integrated hydrogen ecosystems are growing, the so-called “Hydrogen Valleys”. These include German region North Rhine-Westphalia (NRW), which officially presented a hydrogen roadmap in November 2020, establishing targets for both the short (2025) and medium terms (2030) for the adoption of hydrogen in the sectors of Mobility, Industry, Energy &amp; Infrastructure. The purpose of the present thesis is to investigate techno-economic strategies for the introduction of a hydrogen infrastructure in NRW over the next 15 years (2035), enabling the achievement of the abovementioned targets. Moreover, being buses explicitly mentioned within NRW hydrogen roadmap, the present thesis focuses on strategies to ensure the optimal deployment of hydrogen buses within the region. The work is conducted with support from the research institute of Forschungszentrum JĂŒlich (FZJ), North-Rhine Westphalia, Germany. A simulation model (H2MIND) developed by FZJ is taken as main research tool. The output from two other models by FZJ (FINE-NESTOR and FINE-Infrastructure, respectively), which defined the scenario behind the NRW H2 Roadmap, are reviewed and served as starting point for the adaptation of the H2MIND model. An integrative mapping activity regarding i) existing bus depots for NRW population mobility and ii) existing steel production sites in Germany serves the purpose of increasing the resolution of H2MIND model in the geospatial description of the potential hydrogen refuelling stations for bus companies in NRW. Both the hydrogen demand and production derived from FINE-NESTOR are distributed geospatially over Germany for the years 2025-2030-2035, according to the hydrogen-related technologies modelled within H2MIND. The demand is broken down into Buses, Trains, Cars, Heavy-Duty Vehicles (HDVs) and Light Commercial Vehicles (LCVs), Material Handling Vehicles (MHVs), Industrial uses for Steel, Ammonia, Methanol and other Chemicals. The production is modelled around onshore wind power plants, steam methane reforming industrial locations and import. Four hydrogen supply chain pathways were compared by H2MIND simulations: i) transport and distribution by gaseous hydrogen trailers (‘GH2 trucks’), ii) transport and distribution by liquefied hydrogen trailers (‘LH2 trucks’), iii) transport via newly built hydrogen pipelines plus distribution via gaseous hydrogen trailers (‘new pipelines’), iv) transport via reassigned natural gas pipelines plus distribution via gaseous hydrogen trailers (‘reassigned NG pipelines’). The analysis and assessment of the H2MIND simulation results are conducted mainly on economic merit. The key variable used for the assessment is the weighted average Total Expense (TOTEX) [€/kg H2]. This comparison is carried out from global-cost perspective, then the cost breakdown is considered in order to identify specific features in the cost determination. The weighted average TOTEX is calculated also for the case of onsite renewable energy-based electrolysis at bus hydrogen refuelling stations, in order to understand how such a strategic choice could impact the overall hydrogen supply chain cost – various shares of self-sufficiency at bus depots are considered, ranging from 0% (fully centralized configuration, no self-sufficiency) to 100% (total self-sufficiency, complete independent). An overall three-fold increase in hydrogen demand is expected between the years 2025 and 2035 (from 450.72 kt/yr to 1,862.33 kt/yr in Germany, and from 177.87 kt/yr to 519.16 kt/yr in NRW). Both on national and regional level, the main demand driver is expected to shift from the Industrial sector (in 2025) to Mobility (in 2035). As for the geospatial distribution, NRW concentrates the highest hydrogen demand in the country, covering alone approximatively one third of the total German hydrogen demand. Within NRW, the relevance of a district depends on what hydrogen-consuming sector is considered. For Mobility and public transportation, based on the allocation factors used within H2MIND model, Köln ranks as the8 |district with highest demand in many mobility sectors. For buses, Aachen, Wuppertal, DĂŒsseldorf are the three top cities in the ranking in addition to Köln. Recommendation is that investments focus on high hydrogen-demand districts during the start-up phase of infrastructure development (period 2025-2035), where higher utilization factors of the infrastructural assets are expected and financial risks are therefore minimized. Looking into the weighted average TOTEX for the four analysed pathways, gaseous hydrogen trailers (‘GH2 trucks’) are the most convenient option for connecting production and consumption during the start-up phase of infrastructure development (period 2025-2035). Growing cost competitiveness is expected for ‘reassigned NG pipelines’ after 2035, thanks to the increased hydrogen demand and the higher utilization factor for pipelines. For the period 2025-2035, a fully centralized hydrogen supply pathway is the best option for covering bus-related hydrogen demand in the introductory phase of hydrogen infrastructure creation, with cost parity for onsite electrolysis being expected for the future after 2035.Som svar pĂ„ kraven pĂ„ minskade koldioxidutslĂ€pp har fler och fler initiativ tagits för att minska och/eller kompensera nivĂ„n av CO2 (koldioxid) som slĂ€pps ut pĂ„ grund av mĂ€nskliga aktiviteter, vilket Ă€r en av de frĂ€msta orsakerna till de nuvarande hoten om "global uppvĂ€rmning". ” och ”klimatförĂ€ndringar”. "Klimatneutralitet till 2050" har blivit ett avgörande inslag pĂ„ politiska agendor vĂ€rlden över och mot den bakgrunden kan vĂ€tgasekonomin spela en betydande roll. Fler och fler lĂ€nder har lanserat fĂ€rdplaner och strategier för att skapa vĂ€rdekedjor för vĂ€tgas pĂ„ nationell och internationell nivĂ„. Även i regional skala vĂ€xer lokala integrerade vĂ€tgas-ekosystem, de sĂ„ kallade "vĂ€tgasdalarna". Dessa inkluderar den tyska regionen Nordrhein-Westfalen (NRW), som officiellt presenterade en fĂ€rdplan för vĂ€tgas i november 2020, som faststĂ€llde mĂ„l för bĂ„de kort (2025) och medellĂ„ng sikt (2030) för införandet av vĂ€tgas inom sektorerna rörlighet, industri, Energi &amp; Infrastruktur. Syftet med denna avhandling Ă€r att undersöka tekniska och ekonomiska strategier för införandet av en vĂ€tgasinfrastruktur i NRW under de kommande 15 Ă„ren (2035), vilket gör det möjligt att uppnĂ„ ovan nĂ€mnda mĂ„l. Dessutom, eftersom bussar uttryckligen nĂ€mns i NRW:s vĂ€tgasfĂ€rdplan, fokuserar detta examensarbete pĂ„ strategier för att sĂ€kerstĂ€lla en optimal utplacering av vĂ€tgasbussar inom regionen. Arbetet bedrivs med stöd frĂ„n forskningsinstitutet Forschungszentrum JĂŒlich (FZJ), Nordrhein-Westfalen, Tyskland. En simuleringsmodell (H2MIND) utvecklad av FZJ anvĂ€nds som huvudverktyg för forskning. Resultatet frĂ„n tvĂ„ andra modeller av FZJ (FINE-NESTOR respektive FINE-Infrastructure), som definierade scenariot bakom NRW H2 Roadmap, granskas och tjĂ€nade som utgĂ„ngspunkt för anpassningen av H2MIND-modellen. En integrerad kartlĂ€ggning av i) befintliga bussdepĂ„er för NRW-befolkningsrörlighet och ii) befintliga stĂ„lproduktionsanlĂ€ggningar i Tyskland tjĂ€nar syftet att öka upplösningen av H2MIND-modellen i den geospatiala beskrivningen av potentiella vĂ€tgastankstationer för bussföretag i NRW. BĂ„de vĂ€tgasefterfrĂ„gan och produktionen frĂ„n FINE-NESTOR distribueras geospatialt över Tyskland för Ă„ren 2025-2030-2035, enligt de vĂ€tgasrelaterade teknologierna som modelleras inom H2MIND. EfterfrĂ„gan Ă€r uppdelad i bussar, tĂ„g, bilar, tunga fordon (HDV) och lĂ€tta kommersiella fordon (LCV), materialhanteringsfordon (MHV), industriell anvĂ€ndning för stĂ„l, ammoniak, metanol och andra kemikalier. Produktionen Ă€r modellerad kring vindkraftverk pĂ„ land, Ă„ngmetanreformerande industrilokaler och import. Fyra varianter av vĂ€tgasförsörjningskedjan jĂ€mfördes med H2MIND-simuleringar: i) transport och distribution med gasformiga vĂ€tgasslĂ€p ('GH2-lastbilar'), ii) transport och distribution med slĂ€p för flytande vĂ€te ('LH2-lastbilar'), iii) transport via nybyggda vĂ€tgas rörledningar plus distribution via slĂ€p för gasformigt vĂ€tgas (”nya pipelines”), iv) transport via tidigare naturgasledningar plus distribution via slĂ€p för gasformigt vĂ€te (”om-utnyttjade naturgasrörledningar”). Analysen och bedömningen av H2MIND-simuleringsresultaten utförs huvudsakligen pĂ„ ekonomiska meriter. Den nyckelvariabel som anvĂ€nds för bedömningen Ă€r den vĂ€gda genomsnittliga totala kostnaden (TOTEX) [€/kg H2]. Denna jĂ€mförelse görs ur ett globalt kostnadsperspektiv, sedan analyseras kostnadsfördelningen för att identifiera specifika egenskaper i kostnadsbestĂ€mningen. Det viktade genomsnittet av TOTEX berĂ€knas Ă€ven för fallet med elektrolys baserad pĂ„ förnybar energi pĂ„ plats vid vĂ€tgastankstationer för bussar, för att förstĂ„ hur ett sĂ„dant strategiskt val skulle kunna pĂ„verka den totala kostnaden för vĂ€tgasförsörjningskedjan – olika andelar av sjĂ€lvförsörjning vid bussdepĂ„er övervĂ€gs, allt frĂ„n 0 % (helt centraliserad konfiguration, ingen sjĂ€lvförsörjning) till 100 % (total sjĂ€lvförsörjning, fullstĂ€ndigt oberoende). En övergripande trefaldig ökning av efterfrĂ„gan pĂ„ vĂ€tgas förvĂ€ntas mellan Ă„ren 2025 och 2035 (frĂ„n 450,72 kt/Ă„r till 1 862,33 kt/Ă„r i Tyskland och frĂ„n 177,87 kt/Ă„r till 519,16 kt/Ă„r i NRW). BĂ„de pĂ„ nationell och regional nivĂ„ förvĂ€ntas den frĂ€msta efterfrĂ„gedrivkraften flyttas frĂ„n industrisektorn (2025) till mobilitet (2035). NĂ€r det gĂ€ller den geospatiala fördelningen, koncentrerar NRW den högsta efterfrĂ„gan pĂ„ vĂ€tgas i landet, och tĂ€cker ensam ungefĂ€r en tredjedel av det totala tyska vĂ€tgasbehovet. Inom NRW beror ett10 |distrikts relevans pĂ„ vilken vĂ€tgasförbrukande sektor som betraktas. För Mobilitet och kollektivtrafik, baserat pĂ„ allokeringsfaktorer som anvĂ€nds inom H2MIND-modellen, rankas Köln som det distrikt med högst efterfrĂ„gan inom mĂ„nga mobilitetssektorer. För bussar Ă€r Aachen, Wuppertal, DĂŒsseldorf de tre bĂ€sta stĂ€derna i rankingen förutom Köln. Rekommendation Ă€r att investeringar fokuserar pĂ„ distrikt med hög efterfrĂ„gan pĂ„ vĂ€tgas under uppstartsfasen av infrastrukturutveckling (perioden 2025–2035), dĂ€r högre utnyttjandefaktorer av infrastrukturtillgĂ„ngarna förvĂ€ntas och finansiella risker dĂ€rför minimeras. Om man tittar pĂ„ det vĂ€gda genomsnittliga TOTEX för de fyra analyserade varianterna, Ă€r slĂ€p med vĂ€te i gasform (‘GH2-lastbilar’) det lĂ€mpligaste alternativet för att koppla samman produktion och konsumtion under uppstartsfasen av infrastrukturutvecklingen (perioden 2025–2035). Ökande kostnadsfördelar förvĂ€ntas för "om-utnyttjade naturgasrörledningar" efter 2035, tack vare den ökade efterfrĂ„gan pĂ„ vĂ€tgas och den högre utnyttjandefaktorn för rörledningar. För perioden 2025–2035 Ă€r en helt centraliserad vĂ€tgasförsörjningsvĂ€g det bĂ€sta alternativet för att tĂ€cka bussrelaterad efterfrĂ„gan pĂ„ vĂ€tgas i den inledande fasen av etablerandet av en vĂ€tgasinfrastruktur, med kostnadsparitet för elektrolys pĂ„ plats vilket förvĂ€ntas vara lösningen efter 2035
    corecore